Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Suchada Chantrapromma,^a* Hoong-Kun Fun,^b Ibrahim Abdul Razak,^b Qian-Feng Zhang^c and Xinquan Xin^c

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cCoordination Chemistry Institute and Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: suchada@ratree.psu.ac.th

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.109 Data-to-parameter ratio = 20.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Dichlorobis(3,5-dimethylpyrazole-*N*)bis(triphenylphosphine-*P*)ruthenium(II)

In the title centrosymmetric Ru^{II} mononuclear complex, *trans*-Ru(PPh₃)₂(3,5-Me₂pz)₂Cl₂ (pz = pyrazole), [RuCl₂(C₅H₇N₂)₂-(C₁₈H₁₅P)₂], the Ru^{II} ion exhibits an octahedral coordination environment, consisting of the two *trans* P atoms of PPh₃, the two *trans* N atoms of 3,5-Me₂pz and the two *trans* Cl atoms. The 3,5-Me₂pz ligands coordinate terminally to the central Ru^{II} ion.

Comment

The chemistry of ruthenium complexes containing pyrazolate ligands (pz) has attracted much attention during the last decade (Monica & Ardizzoia, 1997). Much of this interest arises from their role in important catalytic reactions; in particular, attention has focused on the complexes containing electron-rich metal centers (Okoroafor *et al.*, 1988). Also, these studies have revealed that pyrazolates exhibit rich coordination modes (Monica & Ardizzoia, 1997). Although reports on the Ru^{II} complexes with phosphine ligands are common, however, the number of Ru^{II} complexes with phosphine and pz mixed ligands is limited (Sherlock *et al.*, 1989). Several hetero-binuclear complexes formed by pz bridges have recently appeared (Garcia *et al.*, 1990*a*,*b*). In this context, we present the crystal structure of the title complex, (I).

The asymmetric unit of (I) contains one-half of the title complex, with the other half generated by inversion through the Ru atom; the Ru atom lies at the origin. A displacement ellipsoid plot with the numbering scheme is shown in Fig. 1. The structure of (I) consists of mononuclear [Ru(PPh₃)₂(3,5-Me₂pz)₂Cl₂] units. The Ru atom is in a slightly distorted octahedral environment. This coordination is formed by two P atoms from *trans*-triphenylphosphine ligands, two N atoms from *trans*-pz ligands and two Cl atoms. The Ru–P bond

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 17 April 2001 Accepted 26 April 2001 Online 30 April 2001

The structure of the title complex showing 50% probability displacement ellipsoids and the atom-numbering scheme.

length in (I) (Table 1) is obviously longer than that in RuCl(PPh₃)₂{HB(pz)3}] [2.340 (3) Å; Alcock *et al.*, 1992] with two *cis*-PPh₃ ligands. The Ru–N bond distance in (I) with terminally coordinated pz ligand is significantly shorter than those in the related complexes with bridging pz ligands, such as [(PPh₃)₂(OC)HRu(m-pz)₂Rh(cod)] (cod = cycloocta-1,5-diene) [2.283 (5) Å; Garcia *et al.*, 1990*a*] and [(PPh₃)₂(O-C)HRu(*m*-Cl)(*m*-pz)Ir(tfb)] (tfb = tetrafluorobenzobarrelene) [2.302 (4) Å; Garcia *et al.*, 1990*b*]. The Ru–Cl bond length is normal. There are two intramolecular C–H···Cl weak interactions, C2–H2A···Cl1ⁱ [symmetry code: (i) –*x*, –*y*, –*z*] and C23–H23C···Cl1, with H···Cl distances of 2.65 and 2.74 Å, respectively.

Experimental

The title complex was obtained from the reaction of $Ru(PPh_3)_3Cl_2$ and 3,5-Me₂pz (molar ratio 1:2) in tetrahydrofuran (THF) (Stephenson & Wilkinson, 1966). To a solution of $Ru(PPh_3)_3Cl_2$ (0.104 mmol) in THF (15 ml) was added 3,5-Me₂pz (0.21 mmol). The mixture was stirred for 2 h and then the solvent was pumped off and the residue washed with hexane. Red crystals suitable for X-ray data collection were obtained by recrystallization from dichloromethane/ hexane at room temperature.

Crystal data

$[RuCl_2(C_5H_7N_2)_2(C_{18}H_{15}P)_2]$	$D_x = 1.407 \text{ Mg m}^{-3}$
$M_r = 886.76$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 8192
a = 11.6466 (2) Å	reflections
b = 17.1438 (3) Å	$\theta = 3.0-28.4^{\circ}$
c = 10.5361 (2) Å	$\mu = 0.62 \text{ mm}^{-1}$
$\beta = 95.603 \ (1)^{\circ}$	T = 293 (2) K
$V = 2093.66 (6) \text{ Å}^3$	Slab, red
<i>Z</i> = 2	$0.28 \times 0.26 \times 0.20 \ \text{mm}$

Data collection

Siemens SMART CCD a detector diffractomete ω scans Absorption correction: e (<i>SADABS</i> ; Sheldrick, $T_{min} = 0.846$, $T_{max} = 0$ 14 880 measured reflecti	area- er mpirical 1996) .887 ons	5169 independent reflect 3919 reflections with $l > R_{int} = 0.052$ $\theta_{max} = 28.3^{\circ}$ $h = -15 \rightarrow 15$ $k = 0 \rightarrow 22$ $l = 0 \rightarrow 14$	ions $2\sigma(I)$
Refinement			
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.109$ S = 0.99 5169 reflections 252 parameters		H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.023$ $\Delta\rho_{max} = 1.06 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.91 \text{ e} \text{ Å}^{-3}$	
Table 1 Selected geometric par	ameters (Å °)		
selected geometric par			
Ru–N2 Ru–P1	2.1278 (19) 2.4116 (6)	Ru-Cl1 P1-C13	2.4491 (6) 1.839 (2)

	2	11 010	1100) (2)
N2-Ru-N2 ⁱ	180.0	P1-Ru-Cl1 ⁱ	96.84 (2)
N2-Ru-P1	87.59 (6)	N2-Ru-Cl1	93.76 (6)
N2-Ru-P1 ⁱ	92.41 (6)	P1-Ru-Cl1	83.16 (2)
P1-Ru-P1 ⁱ	180.0	Cl1 ⁱ -Ru-Cl1	180.0
N2-Ru-Cl1 ⁱ	86.24 (6)		

Symmetry code: (i) -x, -y, -z.

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms with $U_{\rm iso} = 1.2U_{\rm eq}$ for the attached atoms and $U_{\rm iso} = 1.5U_{\rm eq}$ for methyl H atoms. The highest peak in the difference Fourier map lies close to the Ru atom (0.97 Å)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 1990).

The authors would like to thank the Ministry of Education of China, the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/PFIZIK/610942.

References

- Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.
- Garcia, M. P., Lopez, A. M., Esteruelas, M. A., Lahoz, F. J. & Oro, L. A. (1990a). J. Organomet. Chem. 388, 365–377.

Garcia, M. P., Lopez, A. M., Esteruelas, M. A., Lahoz, F. J. & Oro, L. A. (1990b). J. Chem. Soc. Dalton Trans. pp. 3465–3471.

Monica, G. L. & Ardizzoia, G. A. (1997). Prog. Inorg. Chem. 46, 151–238.

Okoroafor, M. O., Shen, L.-H., Honeychuck, R. V. & Brubaker, C. H. Jr

(1988). Organometallics, 7, 1297–1303. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1.
- Bruker AXS Inc., Madison, Wisconsin, USA. Sherlock, S. J., Cowie, M., Singleton, E. & Steyn, M. M. de V. (1989). J.

Organomet. Chem. **361**, 353–365. Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments

Stemens (1996). SMART and SAINT. Stemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stephenson, T. A. & Wilkinson, G. J. (1966). Inorg. Nucl. Chem. 28, 945-951.